
NOTATION 

T, temperature; %, thermal conductivity; c, specific mass heat capacity; p, density; 
c V = cp, specific volumetric heat capacity; ~, heat-transfer coefficient; 21, plate thick- 
ness. Indices: s, surface; m, medium. 
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HEAT TRANSFER BY NATURAL CONVECTION IN SPHERICAL GAS LAYERS 

A. S. Lyalikov UDC 536.25 

The experimental data of [i] are correlated in the form of a dimensionless equa- 
tion which is simple and sufficiently accurate for technical calculations and is 
applicable in the entire region covered by the experiment -- up to Radk = 10 I~ 

The extensive experimental data [i] on free-convection heat transfer through spherical 
layers of gas (air, C02, H=) are of independent value and can also provide material for the 
verification of theoretical solutions in this region. Unfortunately, this valuable experi- 
mental material has not yet been analyzed and correlated in an appropriate manner: The cor- 
relation carried out in [2] lacks an adequate physical basis and is inconsistent with the 
main tenets of similarity theory. 

An analysis of the conditions of similarity of motion and heat-transfer processes due to 
natural convectinn of gas in a region bounded by eccentric spherical boundaries with constant 
temperatures TI and T= led to a system of generalized variables for the description of heat 
transfer on surfaces bounding a spherical layer. In particular, the generalized relation for 
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the average heat-transfer characteristic for the surface of the inner sphere was obtained in 

the form 

Nu d = ~  Grd, Pr,  ~AT, d 0, -- "- P[, - (i) 
'19' T 1 ' 

The minimum dimensionless pressure PM* in the layer is of direct important in the in- 
vestigation of the pressure distribution in the considered spherical cavity and in specific 
conditions is a constant included in the absolute dimensionless pressure P*. Motion and heat 
transfer, however, depend mainly on the pressure gradients and, hence, PM* can be omitted as 
a characteristic criterion from (i). Numerical calculations [3, 4] for natural convection 
in horizontal cylindrical gas layers showed that the ratio Ti/TI has no significant effect on 
the quantitative aspect of heat transfer. Taking into account also that in the case of iner- 
tialess free motion, which is the most probable situation in restricted volumes, Gr and Pr 
are included in the form of the product GrPr = Ra, while the effect of BAT is limited mainly 
to its effect as part of Gr ([5], p. 161), we can put relation (i) in the form 

Nua = / ( R a  d, d/D, q). (2) 

For layers formed by concentric spheres, 

Nu d ----- [ (Raa, d/D). (3) 

F i g u r e  1 shows t h e  e x p e r i m e n t a l  d a t a  o f  [1 ]  f o r  c o n c e n t r i c  l a y e r s ,  t r e a t e d  i n  t e r m s  o f  
NUdk , Radk , and d /D .  F i g u r e  1 shows t h a t :  

1) t h e  g r a d i e n t  o f  t h e  s t r a i g h t  l i n e s  d r awn  t h r o u g h  t h e  e x p e r i m e n t a l  p o i n t s  f o r  a n y  v a l u e  
o f  t h e  g e o m e t r i c  s i m i l a r i t y  c r i t e r i o n  d/D i s  t h e  same and c o r r e s p o n d s  t o  t h e  i n d e x  o f  t h e  
power  o f  Radk,  w h i c h  i s  a p p r o x i m a t e l y  0 . 2 5  i n  t h e  w h o l e  r a n g e  c o v e r e d  by  t h e  e x p e r i m e n t ;  

2) there is distinct stratification of the data in relation to d/D; 

3) in addition, for equal d/D the lines of log N'udk = f(log Radk) are stratified accord- 
ing to range of variation of Radk and the lines d/D = idem show a characteristic upward trend 
in the regions of high Radk. 

The noted features of the experimental data were taken as a basis for their correlation, 
from which we obtained 

N u a ~ = 0 , 3 1 6  ---- ~ a~ 

The subscript k means that the temperature of the Surface of the outer sphere (casing) 
is used as the characteristic temperature. 

For practical calculations we can write (4) in the form 

- -  - o,2s9 ( 5 )  Nuah = 0.316 Kaak �9 

The convective heat transfer across the layer in this case is calculated from the equa- 
tion 

Q = ~ (t 1 - -  t~) F 1. (6) 

The limits of applicability of Eq. (5) are given ~y d/D = 0.118-0.605. For Radk the up- 
per limit corresponds to Radk = 101~ , and the lower limit to the transition from convective 
heat transfer across the layer to heat transfer by conduction, which in the given case cor- 
responds to the condition 

[ 6,33 ] 3,46 " 
Radh 

L (1 - -  d/D) (d/D) ~  (7) 

The experimental data are compared with relation (4) in Fig. 2. The deviations of the 
experimental points from (4), with the exception of three points out of 125, are less than 
• and can be attributed primarily to the scatter of the initial experimental data (see 
Fig. i). 

It would be relevant to compare the obtained result with the results of other investi- 
gators. In the period 1966-1973 there appeared a series of papers [6-9] dealing with heat 
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Fig. i. Experimental data [i] treated in terms of Nudk , 
Radk, and d/D: i) d/D = 0.605, air; 2) 0.6, air; 3) 0.6, 
C02; 4) 0.6, H2; 5) 0.5, air; 6) 0.5, C02; 7) 0.5, H2; 8) 
0.3, air; 9) 0.3, H2; i0) 0.205, air; ii) 0.205, C02; 12) 
0.204, air; 13) 0.204, C02; 14) 0.195, air; 15) 0.195, CO2; 
16) 0.195, H2; 17) 0.118, air; 18) 0.118, C02; I -- straight 
lines with gradient 0.25. 
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Fig. 2. Comparison of relation (4) with experimental data. 
i) Eq. (4); Ko = N~Udk[Ra~~176 -: 

transfer by natural convection between two spheres, one of which was contained within the 
other. The experiments were conducted with air, water, and two silicone fluids in a wide 
range of Gr and Pr, d/D, and vertical relative eccentricities e/ro -- r i. Papers [6-9] can 
rightly be regarded as highly inconsistent investigations, in which extensive and reliable 
experimental data are not correlated correctly enough, and, hence, the accuracy of the ob- 
tained correlations is unsatisfactory. Owing to the absence of tables of experimental data 
in [6, 8, 9] we cannot undertake the correlation of all the experimental data of [i] and [6, 
8, 9] on the basis of a relation of type (2). However, we can assess the quality of some of 
the types of correlation obtained in [9] as a result of investigations [6-9], and compare 
them with the quality of correlation (4). 

For instance, Weber et al. [9], referring to [8], indicate that all the data can be rep- 
resented by the correlation equation 

keff/ k = 0.228 (Ra*) ~ (a) 

I~2 



For concentric spheres the mean deviation of the data was 15.6% and 76% of the data agreed to 
within • with the values calculated from this equation; for eccentric spheres the corres- 
ponding characteristics were a little lower -- 18.2 and 67.6%, respectively. However, Fig. 7 
in [9] shows that if we consider all the experimental points, the deviations from the correla- 
tion equation for a large number of them reach 60-100% (for instance, in the region of Ra* = 
2.103-2.105). Other features of this correlation are: the radius R i contained in Ra* is 
calculated with the aid of a complex of three formulas: the characteristic temperature used 
is a certain temperature Tm which is found by means of a complex of two formulas; the convec- 
tive heat transfer across the layer is calculated from the thermal-conductivity formula for a 
spherical layer. It is obvious that the quality of such a correlation cannot be regarded as 
satisfactory owing to the inadequate accuracy and unjustified laboriousness of the determina- 
tion of kef f and the calculation of Q. 

The reasons for this failure are the incorrect construction of the system of generalized 
variables in form (a). In this case we find that in implicit form keff = f(d/D, ...), and 
Ra* = f(d/D, ~, ...), i.e., the independent geometric similarity criteria are included in the 
characteristic and dependent similarity criteria, which usually leads to difficulties in cor- 
relation and lessaccurate approximation of the experimental data. 

This brief analysis of the results of [6-9] merely brings out the advantages of the sys- 
tem of generalized variables in form (2) or (3) and the obtained correlation (5). 

NOTATION 

Nu d = ad/%, Nusselt; number on surface of inner sphere; d, D, diameters; r, ri, R, ro, 
radii of inner and outer spheres; ~, heat-transfer coefficient on surface of inner cylinder; 
[~ ~ Qk/(tl -- t2)F1, W/m2"deg]; %, thermal conductivity; FI, surface of inner sphere; Q, heat 
transferred by convection across layer; Ra = gB(tl -- t2)d3/~2.Pr, Rayleigh number; g, gravi- 
tational acceleration; B, coefficient of cubic expansion; ~, kinematic viscosity; Gr, Pr, 
Grashof and Prandtl numbers; t, ~ T, ~ temperatures; subscripts 1 and 2 attached to t or 
T refer to the surfaces of the inner and outer spheres, respectively; t = tl -- t2; T = T~ -- 
T2; keff, k, effective and molecular thermal conductivities; Ra* = g~L~AT/vaRi, modified 
Rayleigh number; Ri, radius of displaced inner sphere in complex region (for concentric inner 
sphere Ri = ri); ~ = e/R -- r = e/ro -- ri, vertical relative eccentricity; e, vertical eccen- 
tricity of inner sphere relative to outer. 
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